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Motor Skill Acquisition and Development

Field of vision expands when infants learn to turn their head, sit 
independently, & stand (Franchak et al., 2018; Lima-Alvarez et al., 2014) 

Vocalization decreases while crawling or pulling-to-stand within 
the first couple of weeks of learning those skills (Berger et al., 2017)

Crawling infants have more fragmented sleep & more activity 
during sleep, than age-matched non-crawlers (Scher, 2005; Scher & Cohen, 2005) 

New motor skills impact development



Why Motor Skill 
Impacts Sleep 

• Movement?

• Sleep-dependent muscle twitches are 
important for sensorimotor development
(Blumberg, 2010; Khazipov et al., 2004) 

• Spontaneous twitching during REM maps 
limb movements to cortex (Blumberg et al., 2013; 
Mohns & Blumberg, 2010) 

• Infants may learn about their bodies by 
moving during sleep (Sokoloff et al., 2020)



Questions
1. How does motor development relate to infants’ nightly sleep 

fragmentation & nighttime motor activity?

2. How might motor development relate to the temporal dynamics 
of nighttime motor activity?



Method

• 78 infants (10-18 
months of age) with 
varying walk 
experience had their 
sleep measured using 
actigraphy

• Parents provided the 
exact date of the first 
day their infants could 
walk > 10 feet

• Walk experience was 
calculated from the first 
day infants could walk 
until the night of sleep 
measurement



Analyses
• Recurrence quantification analysis (RQA) was run on each 

infants’ individual time series of minute-by-minute movement 
during sleep

• Used parameters suggested in Calderón-Juárez et al. (2020)

Example of actigram
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• Percent determinism 
%DET of physical 
activity during sleep was 
computed from 
recurrence plots (RP)

• A measure of how 
recurrent & “law-
governed” the activity in 
a system is over time 
(Papaioannou et al., 2019; Terrill et al., 
2010)
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LOW %DET -
Activity values are 
less predictable & 
transient over time

HIGH %DET -
Activity values occur 
in longer, consistent 

periods



Results
• Walk experience unrelated to sleep & mean physical activity
• However, we compared our infants amid walking acquisition and a group of 

typically developing 14-month-olds (Scher, 2012)
• Our sample of newly walking infants had more wake episodes than the 

population estimate (mean difference = 3.87, 95% CI = 3.47 to 4.27, p < .001)
• New walkers had lower sleep efficiency than the population estimate (mean 

difference = -13.34%, 95% CI = -15.37 to -11.31, p < .001) and more physical 
activity during sleep than the population estimate (mean difference = 3.86, 95% 
CI = 1.72 to 6.01, p < .001)

• Sleep duration did not differ between our sample and the population estimate 
(mean difference = 2.04 minutes, 95% CI = -18.44 to 22.52, p = .84)



Results
• With increasing walk experience, there was a decrease in %DET 

(R = -.23, p = .04)
• Age had no impact on %DET

More walk experience, 
less temporally 
organized/repetitive 
activity at night



Results
• A median split sorted infants into two groups (Mdn = 22 days of walk 

experience). Infants with more walk experience had a steeper hourly 
increase in movement (β = 1.95, p < .01) than infants with less (β = 1.25, 
p < .01) 
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Discussion
• A steeper increase in motor activity reflects a higher likelihood 

for infants to wake as the night progresses
• Motor development helps infants escape the “pit of deep sleep”? (Klemm, 2011)

• Because improvements in walking skill continue 3-4 months 
after initial walk onset (Adolph et al., 2003), determinism of movement 
during sleep could reflect continued mastery of walking

• temporal aspects of movement related to brain development



Limitations
• Walk experience (days)

• Rough estimate
• Restricted to new walkers

• Actigraphy
• Differences in limb activity (Atun-Einy et al., 2018)



Future Directions
• Walk experience (days)

• Add better measure of skill/experience
• Expand study to age-matched, experienced walkers

• Actigraphy
• Two actigraphs, one for each leg
• Measure coupling between leg activities
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